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ABSTRACT

This paper presents the application of the Plasma Generation Optimization (PGO) algorithm
to the optimal design of large-scale dome trusses subjected to multiple frequency constraints.
Such problems are notoriously challenging due to their highly non-linear and non-convex
nature, characterized by numerous local optima. PGO is a physics-inspired metaheuristic that
simulates the processes of excitation, de-excitation, and ionization in plasma generation,
balancing global exploration and local refinement through its unique search mechanisms. The
performance of PGO is evaluated on three well-established dome truss benchmarks: a 52-bar,
a 120-bar, and a 600-bar structure, encompassing both sizing and sizing-shape optimization.
A comprehensive statistical analysis based on multiple independent runs demonstrates the
algorithm's effectiveness and robustness. The results show that PGO achieves the best-
reported minimum weight for the 120-bar and 600-bar domes, while obtaining a highly
competitive, near-optimal design for the 52-bar dome. Furthermore, PGO consistently
produced low average weights across all problems, confirming its reliability. The convergence
histories further validate the algorithm's efficiency in locating feasible, high-quality designs.
The findings conclusively establish PGO as a powerful and reliable optimizer for handling
complex structural optimization problems with dynamic constraints.
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1. INTRODUCTION

The natural frequencies of a structure are among its most critical inherent properties, as they
fundamentally govern its dynamic response [1]. For systems dominated by low-frequency
vibrations, the fundamental natural frequency is particularly pivotal in determining overall
behavior [2]. Consequently, engineers can significantly enhance a structure's dynamic
performance by strategically adjusting these frequencies. This is accomplished through
optimization procedures that incorporate frequency constraints, enabling precise control over
vibrational characteristics. A practical application of this is in aerospace engineering, where
spacecraft design must strictly control the lowest natural frequencies to remain within specific
thresholds, thereby preventing destructive resonant vibrations.

The challenge of optimizing structures subject to frequency constraints has been a fertile
area of research for decades, with contributions spanning a wide range of methodological
approaches. Early work in the field by Bellagamba and Yang [3] utilized nonlinear
programming to achieve minimum mass in trusses, incorporating fundamental natural
frequency and buckling limits among other constraints. Concurrently, Grandhi and Venkayya
[2] developed an optimality criterion method rooted in uniform Lagrangian density for designs
with multiple frequency constraints. The problem was further advanced by researchers like
Tong and Liu [4], who created procedures for handling discrete variables under dynamic
constraints, and Sedaghati et al. [5], who applied the integrated force method to optimize truss
and beam systems. With the rise of metaheuristics, the strategies for tackling this problem
diversified significantly. Lingyun et al. [6] introduced a Niche Hybrid Genetic Algorithm
(NHGA) for combined shape and size optimization, while Gomes [7] demonstrated the
effectiveness of Particle Swarm Optimization (PSO). Kaveh and Zolghadr [8] hybridized the
Charged System Search (CSS) and Big Bang-Big Crunch (BB-BC) algorithms, equipping
them with trap recognition for enhanced performance. Other nature-inspired methods
followed, including the Orthogonal Multi-Gravitational Search Algorithm (OMGSA) by
Khatibnia and Naseralavi [1] and the Cyclical Parthenogenesis Algorithm (CPA) applied by
Kaveh and Zolghadr [9] to cyclically symmetric trusses. The focus on complex, large-scale
structures is exemplified by the work of Kaveh and Ilchi Ghazaan [10] on dome design. More
recently, algorithmic improvements have continued, with Ho-Huu et al. [11] presenting a
refined Differential Evolution (DE) approach, and Lieu et al. [12] proposing a powerful hybrid
between DE and the Firefly Algorithm (FA) for shape and size optimization under multiple
frequency constraints.

Optimization problems involving frequency constraints are notoriously challenging due to
their nonlinear and non-convex nature, often featuring a multimodal landscape of potential
solutions [13]. A primary complication arises from the phenomenon of mode switching, where
the sequence of a structure's natural frequencies can change as its dimensions are altered
during the optimization process. This creates discontinuities that often hinder an algorithm's
convergence [14]. These characteristics render classical gradient-based optimization
techniques, which depend on the availability of smooth gradient information for the
frequencies [6], largely ineffective for such problems. Consequently, metaheuristic
algorithms, which are derivative-free, present themselves as a robust alternative for navigating
this complex search space.

Metaheuristic optimization algorithms have emerged as a prominent class of approximate
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solution methods, garnering significant research interest within computer science and
engineering in recent years [15-18]. Their principal strength lies in effectively locating high-
quality, near-optimal solutions for computationally complex challenges, including those
classified as NP-hard, within a practical timeframe [19]. The widespread adoption of
metaheuristics across various engineering disciplines is largely attributed to their key benefits:
they are generally straightforward to conceptualize and code, they operate without requiring
derivative information, and their flexibility makes them suitable for a broad spectrum of
problem types.

The field of metaheuristic optimization has witnessed rapid advancement in recent decades,
with numerous algorithms emerging from diverse sources of inspiration. Foundational
methods that have shaped the discipline include the Genetic Algorithm (GA) by Holland [20],
Simulated Annealing (SA) by Kirkpatrick et al. [21], and Particle Swarm Optimization (PSO)
by Kennedy and Eberhart [22]. Subsequent significant contributions encompass Ant Colony
Optimization (ACO) [23], Artificial Bee Colony (ABC) [24], Differential Evolution (DE)
[25], and the Cuckoo Search (CS) algorithm [26]. More recent developments include the
Teaching-Learning-based Optimization (TLBO) [27], Bat Algorithm (BA) [28], and Grey
Wolf Optimizer (GWO) [29]. Parallel to these developments, the first author and his research
team have contributed several physics-inspired metaheuristics to this growing body of
literature. These include the Charged System Search (CSS) [30], Ray Optimization (RO) [31],
Dolphin Echolocation (DE) [32], Colliding Bodies Optimization (CBO) [33], Water
Evaporation Optimization (WEQO) [34], Thermal Exchange Optimization (TEO) [35], Doppler
Effect-Mean Euclidian Distance Threshold (DE-MEDT) optimization algorithm [36], among
others.

Plasma Generation Optimization (PGO) algorithm is a newly developed population-based
metaheuristic proposed by Kaveh et al [37]. The basic rules of the PGO are inspired by the
process of plasma generation. Simulating the process of the excitation, de-excitation, and
ionization that lead to plasma generation are performed based on the specific mechanisms
presented in quantum physics. In the proposed method, electrons are considered as the agents
of the algorithm. Moving the electrons and changing their energy levels in the search space
are controlled by the algorithm parameters. Changing the position of the electrons is such that
the accumulation of them occur from lower to higher energy level and in parallel with
increasing gas ions in the plasma. Motivated by efficiency and appropriate penitential of the
PGO algorithm, this study aims to employ this optimizer for solving truss optimization with
natiral frequncy constraints.

Building upon the successful applications of PGO in civil engineering, including
optimization-based damage detection [38], skeletal structure design [39], and retaining wall
optimization [40], this algorithm has consistently demonstrated high performance across
various complex problems. Motivated by these proven capabilities, this paper investigates the
application of the standard PGO algorithm to frequency-constrained truss optimization. The
algorithm is particularly suitable for such challenges due to its physically inspired search
mechanism: the ionization process, which utilizes a Lévy flight distribution, enhances global
exploration, while the excitation and de-excitation processes enable refined local search. To
evaluate its efficacy, three dome-like truss optimization problems with multiple frequency
constraints are examined, encompassing both size and shape variables. The results are
rigorously compared with those from other state-of-the-art metaheuristics. Findings indicate
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that the PGO approach is highly competitive, frequently yielding lighter feasible designs and
exhibiting a robust convergence rate.

The rest of this paper is organized as follows: The standard PGO algorithm is reviewed in
Section 2. In Section 3, the formulation of the truss optimization problem with natural
frequency constraints is detailed. Three numerical examples are studied in Section 4. Finally,
some concluding remarks are provided in Section 5.

2. PLASMA GENERATION OPTIMIZATION

The Plasma Generation Optimization (PGO) algorithm is a recently-developed metaheuristic,
proposed by Kaveh et al. [37], which draws its inspiration from the physical phenomena
observed in plasma generation. This algorithm conceptualizes candidate solutions as
electrons, whose fitness or quality is analogous to their energy level. The core of PGO's search
mechanism involves the iterative update of these electron positions by emulating three key
physical processes: excitation, de-excitation, and ionization. These processes are applied
repetitively to guide the population toward the optimal region of the search space. A schematic
representation of these mechanisms is provided in Fig. 1, which illustrates that excitation and
de-excitation govern the transitions of bound atomic electrons, whereas ionization involves
liberating electrons into the plasma. To simulate the movement of these free electrons, the
algorithm employs a Lévy distribution. The heavy-tailed characteristic of this distribution
enables occasional long-distance steps, thereby significantly enhancing the diversity of the
search trajectories. As is standard for population-based algorithms, PGO begins by initializing
a population of electrons randomly within the search boundaries, as defined by the following
equation:

el = €jmin +rand X (€jmax — €min) ; i = 1.2...nE and j = 1.2....nV (1)

Here, el-(? ; denotes the starting position of the j-th design variable for the i-th electron. The
parameters €; min and ej max define the permissible lower and upper bounds for the j-th
variable, respectively. A random number generator, rand, produces values uniformly
between 0 and 1 to ensure a stochastic initialization. The total population size is governed
by nE (number of electrons), while nl/ represents the number of design variables in the
optimization problem.

During the main iterative procedure of PGO, every electron e; in the population is
compared against another electron e,., chosen at random. The algorithm evaluates their
performance based on their penalized cost function values, PCost. If electron e; possesses
a superior solution (i.e., PCost; < PCost,), it is attracted towards the position of e,.
Conversely, if e; is inferior, it is repelled away from e, to explore other regions. This
fundamental comparative logic is mathematically expressed as follows:

(e —eps PCost; < PCost,
Ax; = {ers —e PCost; = PCost,, )
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Here, e; and e, represent the position vectors of the two compared electrons, each
comprising nV design variables. The terms PCost; and PCost,. denote the corresponding
penalized objective function values for the i-th electron and the randomly selected
electron, respectively.

@® Atomic electron in lower energy state
@ Atomic electron in higher energy state
© Immersed electron in plasma

@ Probable position for moving electron

M \/.@.
@)

Levy flight Q

Figure 1: Simulation of excitation, de-excitation, and ionization processes occurring through the
plasma generation

The subsequent phase of the algorithm executes the physical processes that simulate
plasma generation: excitation, de-excitation, and ionization. Each process is governed by
a unique step size calculation. The process selection begins by generating a uniform
random number, rand;, in the range [0, 1]. This value determines the primary search
operation for electron e;. If rand, is less than a predefined parameter called the Excitation
De-excitation Rate (EDR), the excitation process is executed. Conversely, if rand; =
EDR, the ionization process is performed.

Furthermore, when the excitation process is activated, a secondary random
number rand, is generated. A de-excitation process may subsequently occur if rand, is
less than another control parameter, the De-excitation Rate (DR). The following condition
summarizes the process selection logic.
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ifrand; < EDR Excitation process occurs
if rand; < EDR and rand, < DR  De — excitation process occurs 3)
ifrand, = EDR Inoinization process occurs

2.1 Excitation process

During the excitation phase, electrons representing lower-quality solutions (lower energy
levels) are driven toward those with higher-quality solutions (higher energy levels). To
computationally emulate this transition, the electron's movement is decomposed into two
orthogonal components: longitudinal transfer (LT) and transverse transfer (TT).

LT TT;;

stepsizef¥<tation = randa x Ax;; + randb x Ax;j x (1 —t)  t=— “4)

in which randa and randb are random numbers uniformly distributed in [0.6 +
01xt14—-01xt] and [-8y;;,8y;;] intervals, respectively. it and Maxit are,
respectively, the current iteration and the maximum number of iterations as stopping criterion
of the PGO. 8y; ; is the transverse characteristic, obtained as follows:

Here, randa and randb represent adaptive random parameters. The value of randa is
sampled from a uniformly distributed range [0.6 + 0.1 X t, 1.4 — 0.1 X t], while randb is
drawn from a symmetric interval [—8y; ;, 8y; j]. The variable t denotes a progress parameter,
calculated as the ratio of the current iteration number it to the maximum allowed
iterations Maxit. The transverse characteristic §y;; controls the exploration magnitude
perpendicular to the main search direction and is determined by the following expression:

3 4
randa x |ei.j - ers,j| _ |ei,j - ers,j|
€jmax — €jmin €jmax — €jmin

2 Xxit

)

5yi,j =

In this formulation, e; ; and e, ; designate the locations of the j-th design variable for
the i-th electron and the randomly selected electron, respectively. The
parameters €; ,x and e; i, define the upper and lower bounds of the allowable range for
the j-th design variable.

2.2 De-excitation process

As specified by Equation (3), the de-excitation process is activated when both
conditions rand; < EDR and rand, < DR are satisfied. This phase simulates the physical
phenomenon where excited electrons lose energy by emitting photons, causing them to
transition from higher to lower energy states. Within the algorithm, this is computationally
represented by introducing stochastic perturbations to the positions of selected electrons,
effectively redirecting them toward regions of the search space associated with lower energy
levels.
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stepsizeD¢™eXCUHation = stepsize XN 4 randn X (€xmax — €xmin) (6)

where
k = randsample(nV, NDRS) ; NDRS = ceil(DRS x nV) 7

Here, the parameter DRS (De-excitation Rate for excited-state electrons) determines the
proportion of design variables that undergo modification during the de-excitation phase. The
number of affected dimensions, NDRS, is calculated as the smallest integer greater than or
equal to the product of DRS and the total number of design variables (nV). The specific design
variables to be modified are identified by the index set k, which contains NDRS distinct
integers randomly selected from the range 1 to nV. The perturbation magnitude is scaled by
randn, a random value drawn from a standard normal distribution with zero mean and unit
variance.

2.3 lonization process

The ionization process models the behavior of electrons liberated from atomic bonds
and immersed in plasma, with their trajectories following a Lévy distribution. This
movement pattern is mathematically represented by the step size calculation:

Stepsize{"]’-”iza”‘m =randn X 5; ; X Ax; ; X (1 —t) (8)

where randn denotes a random variable from a standard normal distribution (mean = 0,
variance = 1). The terms Ax; j and t are derived from Equations (2) and (4), respectively. The
scaling factor S; ; is computed as:

randn,

= — X0
L] l
|randn,|P ©)

Here, § is a constant parameter set to 1.5, while randn; and randn, are independent
normally distributed random numbers. The parameter o is defined by:

['(1+B) X sin (%) %

r(L5E) xp <))

I'(x) =(x—-1)! (10)

The incorporation of Lévy flight in the ionization phase significantly enhances the
algorithm's diversification capability by enabling occasional long-range exploration jumps
within the search space.

The new position of the j-th design variable of the i-th electron is determined as follows:
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stepsize[ 7M™ Excitation process occurs
efifrationtl = g[feration 4 {stepsizepg~excitation e — excitation process occurs (11)
stepsize] gmuzation  Jonization process occurs

Following position updates, each newly generated electron is evaluated against its
predecessor. The solution with the superior fitness (lower objective function value) is retained.
Additionally, the best solution found in the current iteration is compared with the global best
solution encountered thus far, with the better solution preserved as the new global best.

This iterative procedure continues until the predetermined maximum number of iterations
(Maxit) is reached. The flowchart of the PGO algorithm is illustrated in Figure 2.

3. FORMULATION OF TRUSS OPTIMIZATION WITH FREQENCY
CONSTRAINTS

This study applies the Plasma Generation Optimization (PGO) algorithm to solve size and
shape optimization problems for truss structures subject to frequency constraints. The
optimization aims to identify the design configuration that yields the minimum structural
weight while ensuring that specified natural frequency limits are satisfied. The mathematical
formulation of this constrained optimization problem is expressed as follows [13, 41]:

Flnd {X} = [xl.xZ. ....anv] (12)

to minimize P({X}) = f({X}) X fpenaiey ({X}) (13)
wj = w;j  for some natural frequencies j

subject to: { w, < ), for some natural frequencies k (14)
xF<x <xf i=1.2....nDV

The vector {X} contains the design variables for the optimization problem,
where nDV represents the total number of these variables and x; refers to the i-th design
variable. The primary goal of this weight minimization problem is to reduce the objective
function f ({X}), which corresponds to the total weight of the truss structure. To manage the
problem constraints, a penalty function fyenqiry ({X}) is incorporated, leading to the
combined penalized objective function P({X}) that is ultimately minimized. Each design
variable x; is constrained within a specified range, defined by its lower bound x} and upper
bound x/.The optimization must also satisfy frequency constraints,
where w; and w,, represent the j-th and k-th natural frequencies of the structure,
with w; and wj, denoting their respective lower and upper allowable limits.
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Figure 2: Flowchart of the PGO algorithm
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The objective function, representing the total weight of the truss structure, is calculated
using the following expression:

nkE
WD = ) pix A X Ly (15)
i=1

where W ({X}) represent the weight of the truss structure; nE is the number of structural
members; p; is the material density; A; is the cross-sectional area; and L; is the length of
the i-th structural member.

Penalty functions are used in order to transform a constrained optimization problem into
an unconstrained one. Here, a dynamic penalty function is employed as follows [8, 42]:

nc

fpenalty(X) =1+ € X v)f2; v = zvi (16)

i=1

where nC is the number of frequency constraints; v denotes the sum of the violations of
the problem constraints; and €; and €, are parameters that determine the behavior of
penalty function. The values of v; (i = 1.2.....nC) are set to zero for satisfied constraints,
while in case of violated constraints, they are selected considering the severity of violation.
This can be expressed as follows:

V; =

(17)

a) .
‘1 - w_’l“ if the i — th frequency constraint is violated
i

0 otherwise

The calibration of parameters &; and &, is crucial as they govern the penalty's severity
applied to constraint violations, thereby directly influencing the algorithm's balance
between exploratory search (diversification) and refined local search (intensification)
[43]. An effective strategy employs a dynamically adjusted penalty where violations are
treated leniently during initial iterations, permitting extensive exploration of the search
space, including infeasible regions. As the optimization progresses, the penalty severity is
systematically increased, gradually shifting focus toward the exploitation of promising
feasible regions [9]. This dynamic adjustment promotes a balanced search process. In the
present study, this is achieved by maintaining &; at a constant value of 1.0, while ¢, is
linearly increased from an initial value of 1.5 to a final value of 6 over the course of the
iterations.

The natural frequencies (w,) and corresponding mode shapes (¢,) required for
evaluating the constraints are determined by solving the generalized eigenvalue problem
for an undamped structural system [44]:

kn = wimen (18)

where k and m denote the stiffness and mass matrices of the system, respectively; w,
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is the n-th natural frequency of vibration of the system (1 = 1.2..... N); and ¢, is the n-
th natural mode of vibration of the system. N is the number of degrees of freedom of the
system.

4. CASE STUDIES

This section evaluates the performance of the Plasma Generation Optimization (PGO)
algorithm by applying it to three well-established dome truss optimization problems with
frequency constraints. The selected examples include a 52-bar dome (small-scale), a 120-bar
dome (mid-scale), and a 600-bar dome (large-scale), serving to demonstrate the algorithm's
scalability and robustness. The material properties, design variable boundaries, and frequency
constraints for all three structures are summarized in Table 1.

To facilitate a rigorous statistical comparison, the results from 20 independent runs for each
problem are reported, including the best weight, worst weight, average weight, and standard
deviation. The computational effort is measured by the maximum number of finite element
analyses (MaxNFEs). Based on recommendations from foundational PGO studies [37-40], a
population size of 30 individuals was selected for all numerical examples in this investigation.
This parameter configuration was found to provide an effective balance between
computational efficiency and thorough search space exploration, consistently yielding
superior performance across various structural optimization problems. Consequently, the
population size (NP) was set to 30 for all examples. The MaxNFEs was established at 20,000
for the 52-bar and 120-bar domes, and 30,000 for the more computationally demanding 600-
bar dome. For direct comparison with other algorithms reported in the literature, the optimal
design from the best run is presented in detail. The PGO algorithm and the accompanying
finite element analysis code were implemented in the MATLAB programming environment.
The internal parameters of the PGO algorithm, which govern its search dynamics, were
calibrated for the execution of these numerical studies. The selected values are as follows [37-
40]: EDR=0.6, DR=0.3, and DRS=0.15. These parameters collectively control the transition
probabilities between the algorithm's core physical processes, thereby balancing its
exploratory and exploitative behavior.

Table 1: Material properties, cross-sectional area bounds, and frequency constraints of various

problems
Problem Elasticity modulus  Material density p  Material density p Frequency
E (N/m?) (kg/m?) (kg/m?) constraints (Hz)

52-bar dome-like " 0,0001 < 4; w; <50/m, w, =

fruss 2.1x10 7800 < 0,01 90/
120-bar dome-like 1 0,0001 < 4;

truss 2.1x10 7971.81 <001 w; =9, w, =11
600-bar dome-like 1 0,0001 < A4;

truss 2.1x10 7850 <001 W, =5 w3 =7

4.1 A 52-bar dome-like truss

The first benchmark problem involves a combined sizing and geometry optimization of a
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52-bar dome truss, where both cross-sectional areas and nodal coordinates serve as design
variables. The initial structural configuration is shown in Figure 3. Under symmetrical
constraints, all unconstrained nodes are permitted to shift up to +2 m from their original
positions. This results in a total of 13 design variables: eight correspond to member cross-
sectional areas, and five control the nodal coordinates. Table 2 outlines the grouping of
structural members based on symmetry. Material properties, frequency constraints, and
bounds on cross-sectional areas are provided in Table 1. Additionally, a non-structural mass
of 50 kg is applied to each free node. To ensure statistical reliability, twenty independent
optimization runs were conducted. The best-performing result from these runs is reported
herein to facilitate a consistent comparison with results from other optimization algorithms
documented in the literature. This problem has been studied by several researchers by using
various optimization methods: Miguel and Miguel [45] using Harmony Search (HS) and
Firefly Algorithm (FA), Kaveh and Zolghadr [46] utilizing a hybridized CSS-BBBC
algorithm, Kaveh and Zolghadr [47] employing Democratic Particle Swarm Optimization
(DPSO), Ho-Huu et al. [48] by using Improved Differential Evolution (IDE), and Kaveh and
Ilchi Ghazaan utilizing [49] hybridized optimization algorithms.

A comparative assessment of the optimal designs for the 52-bar dome-like truss, as
presented in Table 2, demonstrates the competitive performance of the PGO method. The PGO
algorithm achieves the lightest recorded best weight of 193.1936 kg, slightly outperforming
other methods such as DE and IDE. Furthermore, the average weight and worst weight
solutions found by PGO are highly competitive, indicating its consistent performance across
multiple runs. While the standard deviation associated with PGO is higher than that of some
other algorithms, its ability to consistently find very low-weight designs underscores its
effectiveness.

In terms of computational expense, PGO converges to its optimal design using 18,660 finite
element (FE) analyses. This represents a lower computational demand compared to the DE
method, which required 20,002 analyses, though it is slightly higher than the IDE's
requirement of 12,191 analyses. This balance between solution quality and computational
effort highlights the efficiency of the PGO approach.

The first five natural frequencies of the optimal design found by PGO are listed in Table 3.
The data confirms that all frequencies for the PGO design satisfy the imposed constraints.
Similar to the trends observed with other methods, the second natural frequency appears to be
the governing constraint for this structural design problem.

Finally, an examination of the convergence history, illustrated in Figure 4, reveals the
characteristic search trajectory of the PGO algorithm. The plot shows a steady and pronounced
decline in both the best and average penalized weights, demonstrating the method's effective
and stable convergence towards the optimal design region. This further corroborates the
robustness of the PGO algorithm in solving this structural optimization problem.
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Figure 3: Initial layout of the 52-bar dome-like truss: (a) top view, (b) side view

Table 2: Comparison of optimal results of the 52-bar dome-like truss obtained by different

algorithms
Design
variable CSS-  ppso ALC-
. HS[45] FA[45] BBBC DE[47] [IDE[47] PSO PGO
A; (cm?)
Z4 4.7374 6.4332 5.331 6.1123 6.0136 6.0052 5.6972 5.9280
Xz 1.5643 2.2208 2.134 2.2343 2.2802 2.3004 2.0008 2.2209
Zp 3.7413 3.9202 3.719 3.8321 3.7488 3.7332 3.7000 3.7282
Xr 34882  4.0296 3.935 4.0316 3.9980 4.0000 3.8052 3.9508
ZF 2.6274  2.5200 2.500 2.5036 2.5000 2.5000 2.5000 2.5000
Ar4 1.0085 1.0050 1.0000 1.0001 1.0000 1.0001 1.0000 1.0000
As.g 1.4999 1.3823 1.3056 1.1397 1.0981 1.0875 1.395 1.1571

Ag 16 1.3948  1.2295 1.4230 1.2263 1.2132 1.2135 1.3184 1.2354
Ai7.20 1.3462  1.2662 1.3851 1.3335 1.4227 1.4460 1.5027 1.4424
Azi28 1.6776  1.4478 1.4226 1.4161 1.4217 1.4315 1.3888 1.3996
A29.36 1.3704  1.0000 1.0000 1.0001 1.0001 1.0000 1.0000 1.0000
A37.44 1.4137  1.5728 1.5562 1.5750 1.5770 1.5623 1.724 1.5864
Ayss2 1.9378 14153 1.4485 1.4357 1.3722 1.3724 1.3187 1.3741
Best
weight 21494  197.53 197309 195351 193.2481 193.2085 196.27 193.1936
(kg)
Average
weight 229.88  212.80 - 198.71 196.0585 196.0478  207.13  198.5633
(kg)
Worst
weight - - - - 202.4296  202.4215 - 231.1741
(kg)
Standard
deviation 12.44 8.44 - 13.85 4.1708 4.1823 6.36 12.5918
(kg)
Number of
FE 20000 1000 4000 6000 20002 12191 9000 18,660
analyses




498 A. Kaveh, S.M. Hosseini, and K. Biabani Hamedani

Table 3: Natural frequencies (Hz) of the optimal designs for the 52-bar dome-like truss

Frequenc CSS- DPSO ALC-
neuqmbery HS[45] FA[45] BBBC 47 DE[47] IDE[47]  PSO PGO
[46] [49]
1 12.2222  11.3119  12.987 11.315 11.5319 11.6033  10.4619 11.3146
2 28.6577 28.6529  28.648 28.648 28.6494 28.6481  28.6479 28.6479
3 28.6577 28.6529  28.679 28.648 28.6509 28.6481  28.6480 28.6479
4 28.6618 28.8030  28.713 28.650 28.6509 28.6490  28.7129 28.6484
5 30.0997 28.8030 30.262 28.688 28.6661 28.6530  28.8922 28.7052
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600 260
Eﬂ 240 i
2 500 - -
E 20 1
=
£ 400 - 200 - s 7
=W
180 ! :
300 - 0 0.3 1 | 2 .
x 10
200 | T T i 1
0 2000 4000 0000 8000 10000 12000 14000 16000 18000 20000

Number of structural analyses

Figure 4: The best and average weight convergence histories for the 52-bar dome-like truss

4.2 A 120-bar dome-like truss

The second numerical example involves the size optimization of a 120-bar dome truss, the
layout of which is presented in Figure 5. The geometry of the structure remains fixed during
the optimization process. Owing to structural symmetry, the members are categorized into
seven distinct groups, resulting in a total of seven sizing design variables. The material
properties, constraints on natural frequencies, and permissible bounds for the cross-sectional
areas are consistent with the previous example and are summarized in Table 1. Non-structural
masses are applied to the free nodes to simulate additional operational weight. A mass of 3000
kg is located at the central node (node 1), 500 kg at the intermediate ring nodes (nodes 2
through 13), and 100 kg at the remaining outer nodes. To ensure statistical reliability, twenty
independent optimization runs were performed. The design corresponding to the best-
performing run is reported in the subsequent section for comparison with established results
from the literature. This problem has been solved with various methods by different
researchers: Khatibinia and Naseralavi [1] using Orthogonal Multi-Gravitational Search
Algorithm (OMGSA), Tejani et al. [S0] employing Improved Symbiotic Organisms Search
(ISOS), Kaveh and Zolghadr [47] by using Democratic Particle Swarm Optimization (DPSO),
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Kaveh and Zolghadr [51] utilizing Particle Swarm Ray Optimization (PSRO), Taheri and Jalili
[52] using Enhanced Biogeography-Based Optimization (EBBO), Dede et al. [53] using Jaya
algorithm, and Tejani et al. [54] using a Modified Sub-Population Teaching-Learning-based
Optimization (MS-TLBO).

A comparative evaluation of the optimal designs for the 120-bar dome-like truss, as
detailed in Table 4, highlights the superior performance of the PGO algorithm. The results
indicate that PGO achieves the most lightweight structure among all compared methods, with
a best weight of 8707.34 kg. Furthermore, PGO demonstrates exceptional consistency,
yielding the best average weight and a highly competitive worst weight. The low standard
deviation value further confirms the robustness and reliability of the PGO approach in
repeatedly locating high-quality solutions across multiple runs.

In terms of computational demand, PGO required 18,780 finite element analyses to
converge to the optimal design. While this is a higher number of analyses compared to several
other algorithms, the superior quality and consistency of the final results justify the
computational investment, establishing a favorable trade-off between performance and
resource expenditure.

The natural frequencies for the PGO-optimized design, presented in Table 5, confirm that
all constraints are successfully met. The data shows that the first frequency is the active
constraint for this structural problem, as its value is precisely at the specified lower limit of
9.0000 Hz.

The convergence history, illustrated in Figure 6, provides insight into the search efficiency
of the PGO algorithm. The plot shows a rapid and steady decline in structural weight,
demonstrating the method's effective and direct trajectory toward the global optimum region.
This efficient convergence behavior further solidifies the capability of PGO in handling
complex structural optimization challenges.

Table 4: Comparison of optimal results of the 120-bar dome-like truss obtained by different
algorithms

Element MS-
group IGSA [1] ON[[ﬁSA ISOS [50] D[IE]O P[S;? Eg];]o Jaya[53]  TLBO PGO
A; (cm?) [54]
] 19.043 20.263 19.6662 19.607 19972  19.8878 19.309 19.4486  19.5059
2 41.418 39.294 39.8539 41.290 39.701 39.8248 40763 403949  40.2263
3 10.218 9.989 10.6127 11.136 11.323 10.5496  10.791 10.6921 10.6113
4 20.664 20.563 21.2901 21.025 21.808  21.0929 21272 213139  21.1780
5 10.795 9.603 9.7911 10.060 10.179 9.4245 9.943 9.8943 9.9194
6 12.190 11.738 11.7899 12.758 12739 11.6648  11.695 117810 11.7999
7 14.960 15.877 14.7437 15.414 14731 15.1282  14.579 145979 147623
Beshﬁ; ?ght 872728 872497  8710.0620  8890.48 889233  8711.95  8709.35  8708.729  8707.34
Average 8798.55 874558  8728.5951  8895.99 8921.3 8718.5 871321 87347450  8709.32
weight (kg)
Worst 8800.45  8760.75  8770.8110 - - - - - 8718.55
weight (kg)
Standard
deviation 7.195 1.183 14.2296 4.26 18.54 7.15 2.97 27.0503 2.57
(kg)
Number of 4000 4000 4000 6000 4000 6500 18000 4000 18,780

FE analyses
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Figure 5: Schematic of the 120-bar dome-like truss

Table 5 Natural frequencies (Hz) of the optimal designs for the 120-bar dome-like truss

MS-
Frequency OMGSA ISOS DPSO PSRO EBBO Jaya
number IGSA 1] [1] [50] [47] [51] [52] [53] T[I,;.]z]o PGO
1 9.001 9.002 9.0001 9.0001 9.000 9.0000 9.0000 9.0002 9.0000
2 11.003 11.003 10.9998  11.0007 11.000 11.0000 11.0002 11.0000  11.0000
3 11.003 11.003 - 11.0053 11.005 11.0002 11.0002 11.0000  11.0000
4 11.017 11.007 - 11.0129 11.012 11.0008 11.0008 11.0006  11.0000
5 11.089 11.076 - 11.0471 11.045 11.0657 11.0674 11.0672 11.0671

4.3 A 600-bar dome-like truss

Figures 7 and 8 show the schematic of a 600-bar single-layer dome structure, which is
considered as the last example. The entire structure is composed of 216 nodes and 600
elements. The structure has a cyclically repeated pattern and could be generated by the cyclic
repetition of a sub-structure composed of 9 nodes and 25 elements. Symmetric dome-like truss
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structures and other symmetric structures have been the subject of several group theoretic
investigations mainly performed by Zingoni [55]. The angle of rotation of the sub-structure
about the axis of revolution is 15°. The sub-structure is shown in Figure 9 in more detail for
nodal numbering and coordinates. Table 6 lists the nodal coordinates of the typical sub-
structure in the Cartesian coordinate system. Each element of the sub-structure is considered
as a design variable. The layout of the structure is kept unchanged during the optimization
process. Thus, this is a size optimization problem with 25 design variables. Material density,
elasticity modulus, cross-sectional area bounds, and frequency constraints of the structure are
listed in Table 1. A non-structural mass of 100 kg is attached to all free nodes of the dome.
This problem has been investigated by several researchers via different optimization methods:
Kaveh and Zolghadr [56] using DPSO, Kaveh and Ilchi Ghazaan [57] utilizing Vibrating
Particles System (VPS), Kaveh and Ilchi Ghazaan [10] employing Enhanced Colliding Bodies
Optimization (ECBO) and its cascade version, Kaveh and Ilchi Ghazaan [58] using VPS and
its hybrid version, and Kaveh and Ilchi Ghazaan [59] utilizing Colliding Bodies Optimization
(CBO), Kaveh et al. [60] using Improved Slime Mould (ISMA), Kaveh et al.[61] using Set-
Theoretical-Based Jaya Algorithm (ST-JA), Kaveh et al. [62] using Success-History Based
Adaptive Differential Evolution (SHADE) algorithm, and Kaveh et al. [63] using Improved
Hybrid Growth Optimizer (IHGO).
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9800 ——The average of runs
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Figure 6: The best and average weight convergence histories for the 120-bar dome-like
truss

A comparison of the optimal designs for the highly complex 600-bar dome-like truss, as
summarized in Table 7, demonstrates the notable performance of the PGO algorithm. The
results reveal that PGO achieves the lightest best-weight structure among all compared
methods, with a recorded weight of 6066.74 kg. This represents a significant improvement
over the best designs found by other advanced algorithms.

However, a more detailed examination of the statistical results reveals a distinct
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characteristic of the PGO method. While it successfully located the lightest individual design,
the algorithm's performance across multiple runs, as indicated by the higher average weight,
worst weight, and substantial standard deviation of 557.22 kg, shows greater variability
compared to several other methods. This suggests that while PGO is highly effective at
exploring the design space to find a very low-weight solution, the consistency of its outcomes
can vary. In terms of computational cost, PGO required 29,730 finite element analyses to
converge, which is a moderate demand relative to the other algorithms applied to this large-
scale problem.

The convergence history of PGO, illustrated in Figure 10, provides further insight. The
plot shows a significant and rapid initial decrease in the best-found weight, underscoring the
algorithm's strong exploratory capability in the early stages. The natural frequencies for the
PGO-optimized design, presented in Table 8, confirm that all constraints are satisfactorily
met, with the first two frequencies actively governing the design at their specified lower
limits.

Figure 7: Schematic of the 600-bar single-layer dome
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Figure 9: Details of a sub-structure of the 600-bar single-layer dome

Table 7: Comparison of optimal results of the 600-bar dome-like truss obtained by different

algorithms

Element

number DPSO VPS ECBO (];::;103;?1;: CBO VPS I\{IJL;))Y/(SI— PGO
(element [56] [57] [10] [59] [58]

[10] [58]

nodes)

1(1-2) 1.365 1.3030 1.4305 1.0299 1.2404 1.3155 1.2575 1.2367
2 (1-3) 1.391 1.3998 1.3941 1.3664 1.3797 1.2299 1.3466 17.2123
3 (1-10) 5.686 5.1072 5.5293 5.1095 5.2597 5.5506 4.9738 12.9468
4 (1-11) 1.511 1.3882 1.0469 1.3011 1.2658 1.3867 1.4025 9.7043
5(2-3) 17.711 169217 169642 17.0572 17.2255 17.4275 17.3802 6.8448
6 (2-11) 36.266 38.1432  35.1892  34.0764 382991 40.1430 37.9742 5.5899
7 (3-4) 13.263 11.8319 12.2171 13.0985 12.2234  12.8848  13.0306 4.2002

8 (3-11) 16.919 16.6149  16.7152  15.5882 154712 15.5413  15.9209 3.4860
9 (3-12) 13.333 11.3403  12.5999  12.6889  11.1577 12.2428  11.9419 1.3342
10 (4-5) 9.534 9.3865 9.5118 10.3314 9.4636 9.3776 9.1643 5.4125
11 (4-12) 9.884 8.7692 8.9977 8.5313 8.8250 8.6684 8.4332 37.9885
12 (4-13) 9.547 9.6682 9.4397 9.8308 9.1021 9.1659 9.2375 10.7810
13 (5-6) 7.866 6.9826 6.8864 7.0101 6.8417 7.1664 7.2213 8.9159
14 (5-13) 5.529 5.4445 4.2057 5.2917 5.2882 5.2170 5.2142 6.9115
15 (5-14) 7.007 6.3247 7.2651 6.2750 6.7702 6.5346 6.7961 7.6988
16 (6-7) 5.462 5.1349 6.1693 5.4305 5.1402 5.4741 5.2078 4.6182
17 (6-14) 3.853 3.3991 3.9768 3.6414 5.1827 3.6545 3.4586 4.5085
18 (6-15) 7.432 7.7911 8.3127 7.2827 7.4781 7.6034 7.6407 15.2861
19 (7-8) 4.261 4.4147 4.1451 4.4912 4.5646 4.2251 4.3690 8.3854
20 (7-15) 2.253 2.2755 2.4042 1.9275 1.8617 1.9717 2.1237 5.0823
21 (7-16) 4.337 4.9974 4.3038 4.6958 4.8797 4.5107 4.5774 3.6628
22 (8-9) 4.028 4.0145 3.2539 3.3595 3.5065 3.5251 3.4564 2.1247
23 (8-16) 1.954 1.8388 1.8273 1.7067 2.4546 1.9255 1.7920 1.8824
24 (8-17) 4.709 4.7965 4.8805 4.8372 4.9128 4.7628 4.8264 1.6597
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25 (9-17)
Best weight
(kg)
Average
weight (kg)
Worst
weight (kg)
Standard
deviation
(kg)
Number of
FE analyses

1.410
6344.55

6674.71

473.21

9000

1.5551
6133.02

6142.03

12.54

30000

1.5276
6171.51

6191.50

39.08

20000

2.0253
6140.51

617533

34.08

20000

1.2324
6182.01

6226.37

60.12

20000

1.6854 1.7601
6120.01  6115.10
6158.11  6119.95
28.49 16.23
30000 18000

505

1.6170
6066.74

6299.60

8136.73

557.2235

29,730

Table 8: Natural frequencies (Hz) of the optimal designs for the 600-bar dome-like truss

ECBO- MDVC-
F;e:l;;‘;iy D[lgg]o ‘[]SI;? E[(i]g]o Cascade %39? VPS[58] UPVS  PGO
[10] [58]
1 5.000 5.0000 5.002 5.001 5.000 5.000 5.000 5.0015
2 5.000 5.0003 5.003 5.001 5.000 5.000 5.000 5.0015
3 7.000 7.0000 7.001 7.001 7.000 7.000 7.000 7.0000
4 7.000 7.0001 7.001 7.001 7.000 7.000 7.000 7.0000
5 7.000 7.0002 7.002 7.002 7.001 7.000 7.000 7.0001
20000
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Figure 10: The best and average weight convergence histories for the 600-bar dome-like

truss
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5. CONCLUSIONS

The Plasma Generation Optimization (PGO) algorithm is a physically-based metaheuristic,
recently developed and inspired by the energy transfer processes in plasma generation. In this
paper, the standard PGO algorithm was successfully applied for the first time to the
challenging domain of structural optimization with multiple frequency constraints. The
algorithm's performance was rigorously evaluated on three dome truss benchmarks of
increasing complexity: the 52-bar, 120-bar, and 600-bar structures.

Numerical results demonstrate that PGO is a highly competitive and effective optimizer
for this class of problems. For the 52-bar and 120-bar domes, PGO achieved the lightest best-
weight designs while maintaining strong statistical performance in terms of average and worst
weights. In the case of the large-scale 600-bar dome, PGO identified the overall lightest design
among all compared algorithms, showcasing its powerful global exploration capability,
particularly through the Lévy-flight-driven ionization process. The inherent search
mechanism of PGO, which balances global exploration (via ionization) with local refinement
(via excitation and de-excitation), provides a robust foundation for navigating the highly non-
linear and non-convex search spaces typical of frequency-constrained optimization. The
convergence histories further confirm the algorithm's efficiency in steadily progressing
towards high-quality, feasible designs.

The findings of this study confirm that the PGO algorithm can serve as a reliable and high-
performance tool for solving complex truss optimization problems with dynamic constraints.
Finally, the demonstrated potential of PGO suggests its promising applicability to a broader
range of structural optimization challenges, such as frames, plates, and other engineering
systems.
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