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ABSTRACT 
 

This paper presents the application of the Plasma Generation Optimization (PGO) algorithm 

to the optimal design of large-scale dome trusses subjected to multiple frequency constraints. 

Such problems are notoriously challenging due to their highly non-linear and non-convex 

nature, characterized by numerous local optima. PGO is a physics-inspired metaheuristic that 

simulates the processes of excitation, de-excitation, and ionization in plasma generation, 

balancing global exploration and local refinement through its unique search mechanisms. The 

performance of PGO is evaluated on three well-established dome truss benchmarks: a 52-bar, 

a 120-bar, and a 600-bar structure, encompassing both sizing and sizing-shape optimization. 

A comprehensive statistical analysis based on multiple independent runs demonstrates the 

algorithm's effectiveness and robustness. The results show that PGO achieves the best-

reported minimum weight for the 120-bar and 600-bar domes, while obtaining a highly 

competitive, near-optimal design for the 52-bar dome. Furthermore, PGO consistently 

produced low average weights across all problems, confirming its reliability. The convergence 

histories further validate the algorithm's efficiency in locating feasible, high-quality designs. 

The findings conclusively establish PGO as a powerful and reliable optimizer for handling 

complex structural optimization problems with dynamic constraints. 
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1. INTRODUCTION 
 

The natural frequencies of a structure are among its most critical inherent properties, as they 

fundamentally govern its dynamic response [1]. For systems dominated by low-frequency 

vibrations, the fundamental natural frequency is particularly pivotal in determining overall 

behavior [2]. Consequently, engineers can significantly enhance a structure's dynamic 

performance by strategically adjusting these frequencies. This is accomplished through 

optimization procedures that incorporate frequency constraints, enabling precise control over 

vibrational characteristics. A practical application of this is in aerospace engineering, where 

spacecraft design must strictly control the lowest natural frequencies to remain within specific 

thresholds, thereby preventing destructive resonant vibrations. 

The challenge of optimizing structures subject to frequency constraints has been a fertile 

area of research for decades, with contributions spanning a wide range of methodological 

approaches. Early work in the field by Bellagamba and Yang [3] utilized nonlinear 

programming to achieve minimum mass in trusses, incorporating fundamental natural 

frequency and buckling limits among other constraints. Concurrently, Grandhi and Venkayya 

[2] developed an optimality criterion method rooted in uniform Lagrangian density for designs 

with multiple frequency constraints. The problem was further advanced by researchers like 

Tong and Liu [4], who created procedures for handling discrete variables under dynamic 

constraints, and Sedaghati et al. [5], who applied the integrated force method to optimize truss 

and beam systems. With the rise of metaheuristics, the strategies for tackling this problem 

diversified significantly. Lingyun et al. [6] introduced a Niche Hybrid Genetic Algorithm 

(NHGA) for combined shape and size optimization, while Gomes [7] demonstrated the 

effectiveness of Particle Swarm Optimization (PSO). Kaveh and Zolghadr [8] hybridized the 

Charged System Search (CSS) and Big Bang-Big Crunch (BB-BC) algorithms, equipping 

them with trap recognition for enhanced performance. Other nature-inspired methods 

followed, including the Orthogonal Multi-Gravitational Search Algorithm (OMGSA) by 

Khatibnia and Naseralavi [1] and the Cyclical Parthenogenesis Algorithm (CPA) applied by 

Kaveh and Zolghadr [9] to cyclically symmetric trusses. The focus on complex, large-scale 

structures is exemplified by the work of Kaveh and Ilchi Ghazaan [10] on dome design. More 

recently, algorithmic improvements have continued, with Ho-Huu et al. [11] presenting a 

refined Differential Evolution (DE) approach, and Lieu et al. [12] proposing a powerful hybrid 

between DE and the Firefly Algorithm (FA) for shape and size optimization under multiple 

frequency constraints. 

Optimization problems involving frequency constraints are notoriously challenging due to 

their nonlinear and non-convex nature, often featuring a multimodal landscape of potential 

solutions [13]. A primary complication arises from the phenomenon of mode switching, where 

the sequence of a structure's natural frequencies can change as its dimensions are altered 

during the optimization process. This creates discontinuities that often hinder an algorithm's 

convergence [14]. These characteristics render classical gradient-based optimization 

techniques, which depend on the availability of smooth gradient information for the 

frequencies [6], largely ineffective for such problems. Consequently, metaheuristic 

algorithms, which are derivative-free, present themselves as a robust alternative for navigating 

this complex search space. 

Metaheuristic optimization algorithms have emerged as a prominent class of approximate 
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solution methods, garnering significant research interest within computer science and 

engineering in recent years [15-18]. Their principal strength lies in effectively locating high-

quality, near-optimal solutions for computationally complex challenges, including those 

classified as NP-hard, within a practical timeframe [19]. The widespread adoption of 

metaheuristics across various engineering disciplines is largely attributed to their key benefits: 

they are generally straightforward to conceptualize and code, they operate without requiring 

derivative information, and their flexibility makes them suitable for a broad spectrum of 

problem types. 

The field of metaheuristic optimization has witnessed rapid advancement in recent decades, 

with numerous algorithms emerging from diverse sources of inspiration. Foundational 

methods that have shaped the discipline include the Genetic Algorithm (GA) by Holland [20], 

Simulated Annealing (SA) by Kirkpatrick et al. [21], and Particle Swarm Optimization (PSO) 

by Kennedy and Eberhart [22]. Subsequent significant contributions encompass Ant Colony 

Optimization (ACO) [23], Artificial Bee Colony (ABC) [24], Differential Evolution (DE) 

[25], and the Cuckoo Search (CS) algorithm [26]. More recent developments include the 

Teaching-Learning-based Optimization (TLBO) [27], Bat Algorithm (BA) [28], and Grey 

Wolf Optimizer (GWO) [29]. Parallel to these developments, the first author and his research 

team have contributed several physics-inspired metaheuristics to this growing body of 

literature. These include the Charged System Search (CSS) [30], Ray Optimization (RO) [31], 

Dolphin Echolocation (DE) [32], Colliding Bodies Optimization (CBO) [33], Water 

Evaporation Optimization (WEO) [34], Thermal Exchange Optimization (TEO) [35], Doppler 

Effect-Mean Euclidian Distance Threshold (DE-MEDT) optimization algorithm [36], among 

others.  

Plasma Generation Optimization (PGO) algorithm is a newly developed population-based 

metaheuristic proposed by Kaveh et al [37]. The basic rules of the PGO are inspired by the 

process of plasma generation. Simulating the process of the excitation, de-excitation, and 

ionization that lead to plasma generation are performed based on the specific mechanisms 

presented in quantum physics. In the proposed method, electrons are considered as the agents 

of the algorithm. Moving the electrons and changing their energy levels in the search space 

are controlled by the algorithm parameters. Changing the position of the electrons is such that 

the accumulation of them occur from lower to higher energy level and in parallel with 

increasing gas ions in the plasma. Motivated by efficiency and appropriate penitential of the 

PGO algorithm, this study aims to employ this optimizer for solving truss optimization with 

natiral frequncy constraints.  

Building upon the successful applications of PGO in civil engineering, including 

optimization-based damage detection [38], skeletal structure design [39], and retaining wall 

optimization [40], this algorithm has consistently demonstrated high performance across 

various complex problems. Motivated by these proven capabilities, this paper investigates the 

application of the standard PGO algorithm to frequency-constrained truss optimization. The 

algorithm is particularly suitable for such challenges due to its physically inspired search 

mechanism: the ionization process, which utilizes a Lévy flight distribution, enhances global 

exploration, while the excitation and de-excitation processes enable refined local search. To 

evaluate its efficacy, three dome-like truss optimization problems with multiple frequency 

constraints are examined, encompassing both size and shape variables. The results are 

rigorously compared with those from other state-of-the-art metaheuristics. Findings indicate 
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that the PGO approach is highly competitive, frequently yielding lighter feasible designs and 

exhibiting a robust convergence rate. 

The rest of this paper is organized as follows: The standard PGO algorithm is reviewed in 

Section 2. In Section 3, the formulation of the truss optimization problem with natural 

frequency constraints is detailed. Three numerical examples are studied in Section 4. Finally, 

some concluding remarks are provided in Section 5. 

 

 

2. PLASMA GENERATION OPTIMIZATION 
 

The Plasma Generation Optimization (PGO) algorithm is a recently-developed metaheuristic, 

proposed by Kaveh et al. [37], which draws its inspiration from the physical phenomena 

observed in plasma generation. This algorithm conceptualizes candidate solutions as 

electrons, whose fitness or quality is analogous to their energy level. The core of PGO's search 

mechanism involves the iterative update of these electron positions by emulating three key 

physical processes: excitation, de-excitation, and ionization. These processes are applied 

repetitively to guide the population toward the optimal region of the search space. A schematic 

representation of these mechanisms is provided in Fig. 1, which illustrates that excitation and 

de-excitation govern the transitions of bound atomic electrons, whereas ionization involves 

liberating electrons into the plasma. To simulate the movement of these free electrons, the 

algorithm employs a Lévy distribution. The heavy-tailed characteristic of this distribution 

enables occasional long-distance steps, thereby significantly enhancing the diversity of the 

search trajectories. As is standard for population-based algorithms, PGO begins by initializing 

a population of electrons randomly within the search boundaries, as defined by the following 

equation: 

 

𝑒𝑖,𝑗
0 = 𝑒𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑒𝑗,𝑚𝑎𝑥 − 𝑒𝑗,𝑚𝑖𝑛)  ;  𝑖 = 1,2,… , 𝑛𝐸 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛𝑉 (1) 

 

Here, 𝑒𝑖,𝑗
0  denotes the starting position of the 𝑗-th design variable for the 𝑖-th electron. The 

parameters 𝑒𝑗,min  and 𝑒𝑗,max  define the permissible lower and upper bounds for the 𝑗-th 

variable, respectively. A random number generator, rand, produces values uniformly 

between 0 and 1 to ensure a stochastic initialization. The total population size is governed 

by 𝑛𝐸 (number of electrons), while 𝑛𝑉 represents the number of design variables in the 

optimization problem. 

During the main iterative procedure of PGO, every electron 𝑒𝑖 in the population is 

compared against another electron 𝑒𝑟𝑠, chosen at random. The algorithm evaluates their 

performance based on their penalized cost function values, 𝑃𝐶𝑜𝑠𝑡. If electron 𝑒𝑖 possesses 

a superior solution (i.e., PCost𝑖 < PCost𝑟𝑠), it is attracted towards the position of 𝑒𝑟𝑠. 
Conversely, if 𝑒𝑖 is inferior, it is repelled away from 𝑒𝑟𝑠 to explore other regions. This 

fundamental comparative logic is mathematically expressed as follows: 

 

∆𝑥𝑖 = {
𝑒𝑖 − 𝑒𝑟𝑠                       𝑃𝐶𝑜𝑠𝑡𝑖 < 𝑃𝐶𝑜𝑠𝑡𝑟𝑠
𝑒𝑟𝑠 − 𝑒𝑖                      𝑃𝐶𝑜𝑠𝑡𝑖 ≥ 𝑃𝐶𝑜𝑠𝑡𝑟𝑐  

 (2) 
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Here, 𝑒𝑖 and 𝑒𝑟𝑠 represent the position vectors of the two compared electrons, each 

comprising 𝑛𝑉 design variables. The terms PCost𝑖 and PCost𝑟𝑠 denote the corresponding 

penalized objective function values for the 𝑖-th electron and the randomly selected 

electron, respectively. 

 

   
Figure 1: Simulation of excitation, de-excitation, and ionization processes occurring through the 

plasma generation 

 

The subsequent phase of the algorithm executes the physical processes that simulate 

plasma generation: excitation, de-excitation, and ionization. Each process is governed by 

a unique step size calculation. The process selection begins by generating a uniform 

random number, rand1, in the range [0, 1]. This value determines the primary search 

operation for electron 𝑒𝑖. If rand1 is less than a predefined parameter called the Excitation 

De-excitation Rate (EDR), the excitation process is executed. Conversely, if rand1 ≥
EDR, the ionization process is performed. 

Furthermore, when the excitation process is activated, a secondary random 

number rand2 is generated. A de-excitation process may subsequently occur if rand2 is 

less than another control parameter, the De-excitation Rate (DR). The following condition 

summarizes the process selection logic. 
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{

𝑖𝑓𝑟𝑎𝑛𝑑1 < 𝐸𝐷𝑅                                    
 𝑖𝑓 𝑟𝑎𝑛𝑑1 < 𝐸𝐷𝑅 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑2 < 𝐷𝑅
𝑖𝑓𝑟𝑎𝑛𝑑1 ≥ 𝐸𝐷𝑅                                     

 

𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛  𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑐𝑐𝑢𝑟𝑠               
𝐷𝑒 − 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑐𝑐𝑢𝑟𝑠    
𝐼𝑛𝑜𝑖𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑐𝑐𝑢𝑟𝑠          

(3) 

 

2.1 Excitation process 

During the excitation phase, electrons representing lower-quality solutions (lower energy 

levels) are driven toward those with higher-quality solutions (higher energy levels). To 

computationally emulate this transition, the electron's movement is decomposed into two 

orthogonal components: longitudinal transfer (LT) and transverse transfer (TT).  

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖,𝑗
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑𝑎 × ∆𝑥𝑖,𝑗⏞        

𝐿𝑇𝑖,𝑗

+ 𝑟𝑎𝑛𝑑𝑏 × ∆𝑥𝑖,𝑗 × (1 − 𝑡)
⏞              

𝑇𝑇𝑖,𝑗

        𝑡 =
𝑖𝑡

𝑀𝑎𝑥𝑖𝑡
            

(4) 

 

in which  𝑟𝑎𝑛𝑑𝑎  and 𝑟𝑎𝑛𝑑𝑏 are random numbers uniformly distributed in [0,6 +
0,1 × t, 1,4 − 0,1 × 𝑡] and [−𝛿𝑦𝑖,𝑗 , 𝛿𝑦𝑖,𝑗] intervals, respectively. 𝑖𝑡 and 𝑀𝑎𝑥𝑖𝑡 are, 

respectively, the current iteration and the maximum number of iterations as stopping criterion 

of the PGO. 𝛿𝑦𝑖,𝑗  is the transverse characteristic, obtained as follows:  

Here, 𝑟𝑎𝑛𝑑𝑎 and 𝑟𝑎𝑛𝑑𝑏 represent adaptive random parameters. The value of 𝑟𝑎𝑛𝑑𝑎 is 

sampled from a uniformly distributed range [0,6 + 0,1 × t, 1,4 − 0,1 × 𝑡], while 𝑟𝑎𝑛𝑑𝑏 is 

drawn from a symmetric interval [−𝛿𝑦𝑖,𝑗, 𝛿𝑦𝑖,𝑗]. The variable 𝑡 denotes a progress parameter, 

calculated as the ratio of the current iteration number 𝑖𝑡 to the maximum allowed 

iterations 𝑀𝑎𝑥𝑖𝑡. The transverse characteristic 𝛿𝑦𝑖,𝑗 controls the exploration magnitude 

perpendicular to the main search direction and is determined by the following expression: 

 

𝛿𝑦𝑖,𝑗 =
√|𝑟𝑎𝑛𝑑𝑎 × (

|𝑒𝑖,𝑗 − 𝑒𝑟𝑠,𝑗|
𝑒𝑗,𝑚𝑎𝑥 − 𝑒𝑗,𝑚𝑖𝑛

)

3

− (
|𝑒𝑖,𝑗 − 𝑒𝑟𝑠,𝑗|
𝑒𝑗,𝑚𝑎𝑥 − 𝑒𝑗,𝑚𝑖𝑛

)

4

|

2 × 𝑖𝑡
 

(5) 

 

In this formulation, 𝑒𝑖,𝑗 and 𝑒𝑟𝑠,𝑗 designate the locations of the 𝑗-th design variable for 

the 𝑖-th electron and the randomly selected electron, respectively. The 

parameters 𝑒𝑗,max  and 𝑒𝑗,min  define the upper and lower bounds of the allowable range for 

the 𝑗-th design variable. 

 

2.2 De-excitation process 

As specified by Equation (3), the de-excitation process is activated when both 

conditions rand1 < EDR and rand2 < DR are satisfied. This phase simulates the physical 

phenomenon where excited electrons lose energy by emitting photons, causing them to 

transition from higher to lower energy states. Within the algorithm, this is computationally 

represented by introducing stochastic perturbations to the positions of selected electrons, 

effectively redirecting them toward regions of the search space associated with lower energy 

levels. 
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𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖,𝑘
𝐷𝑒−𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖,𝑘

𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑟𝑎𝑛𝑑𝑛 × (𝑒𝑘,𝑚𝑎𝑥 − 𝑒𝑘,𝑚𝑖𝑛) (6) 

 

where  

 

𝑘 = 𝑟𝑎𝑛𝑑𝑠𝑎𝑚𝑝𝑙𝑒(𝑛𝑉, 𝑁𝐷𝑅𝑆)   ;    𝑁𝐷𝑅𝑆 = 𝑐𝑒𝑖𝑙(𝐷𝑅𝑆 × 𝑛𝑉) (7) 

 

Here, the parameter DRS (De-excitation Rate for excited-state electrons) determines the 

proportion of design variables that undergo modification during the de-excitation phase. The 

number of affected dimensions, NDRS, is calculated as the smallest integer greater than or 

equal to the product of DRS and the total number of design variables (𝑛𝑉). The specific design 

variables to be modified are identified by the index set 𝑘, which contains NDRS distinct 

integers randomly selected from the range 1 to 𝑛𝑉. The perturbation magnitude is scaled by 

𝑟𝑎𝑛𝑑𝑛, a random value drawn from a standard normal distribution with zero mean and unit 

variance. 

 

2.3 Ionization process 

The ionization process models the behavior of electrons liberated from atomic bonds 

and immersed in plasma, with their trajectories following a Lévy distribution. This 

movement pattern is mathematically represented by the step size calculation: 
 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖,𝑗
𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑𝑛 × 𝑆𝑖,𝑗 × ∆𝑥𝑖,𝑗 × (1 − 𝑡) (8) 

 

where randn denotes a random variable from a standard normal distribution (mean = 0, 

variance = 1). The terms Δ𝑥𝑖,𝑗 and 𝑡 are derived from Equations (2) and (4), respectively. The 

scaling factor 𝑆𝑖,𝑗 is computed as: 

 

𝑆𝑖,𝑗 =
𝑟𝑎𝑛𝑑𝑛1

|𝑟𝑎𝑛𝑑𝑛2|
1
𝛽

× 𝜎   

(9) 

 

Here, 𝛽 is a constant parameter set to 1.5, while randn1 and randn2 are independent 

normally distributed random numbers. The parameter 𝜎 is defined by: 

 

𝜎 = (
Γ(1 + 𝛽) × 𝑠𝑖𝑛 (

𝜋𝛽
2 )

Γ (
1 + 𝛽
2 ) × 𝛽 × 2

(
𝛽−1
2
)
)

1
𝛽

   ;    Γ(𝑥) = (𝑥 − 1)! (10) 

 

The incorporation of Lévy flight in the ionization phase significantly enhances the 

algorithm's diversification capability by enabling occasional long-range exploration jumps 

within the search space. 
The new position of the j-th design variable of the i-th electron is determined as follows:   
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𝑒𝑖,𝑗
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛+1 = 𝑒𝑖,𝑗

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + {

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖,𝑗
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛         𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛  𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑐𝑐𝑢𝑟𝑠         

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖,𝑘
𝐷𝑒−𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛  𝐷𝑒 − 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑐𝑐𝑢𝑟𝑠

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖,𝑗
𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛        𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑐𝑐𝑢𝑟𝑠          

 (11) 

 

Following position updates, each newly generated electron is evaluated against its 

predecessor. The solution with the superior fitness (lower objective function value) is retained. 

Additionally, the best solution found in the current iteration is compared with the global best 

solution encountered thus far, with the better solution preserved as the new global best. 

This iterative procedure continues until the predetermined maximum number of iterations 

(𝑀𝑎𝑥𝑖𝑡) is reached. The flowchart of the PGO algorithm is illustrated in Figure 2. 

 

 

3. FORMULATION OF TRUSS OPTIMIZATION WITH FREQENCY 

CONSTRAINTS 
 

This study applies the Plasma Generation Optimization (PGO) algorithm to solve size and 

shape optimization problems for truss structures subject to frequency constraints. The 

optimization aims to identify the design configuration that yields the minimum structural 

weight while ensuring that specified natural frequency limits are satisfied. The mathematical 

formulation of this constrained optimization problem is expressed as follows [13, 41]: 

 

Find {𝑋} = [𝑥1, 𝑥2, … , 𝑥𝑛𝐷𝑉] (12) 
 

to minimize 𝑃({𝑋}) = 𝑓({𝑋}) × 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋}) (13) 

  

subject to: {

𝜔𝑗 ≥ 𝜔𝑗
∗       for some natural frequencies 𝑗

𝜔𝑘 ≤ 𝜔𝑘
∗        for some natural frequencies 𝑘

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈                             𝑖 = 1,2, … , 𝑛𝐷𝑉

 (14) 

 

The vector {𝑋} contains the design variables for the optimization problem, 

where 𝑛𝐷𝑉  represents the total number of these variables and 𝑥𝑖 refers to the 𝑖-th design 

variable. The primary goal of this weight minimization problem is to reduce the objective 

function 𝑓({𝑋}), which corresponds to the total weight of the truss structure. To manage the 

problem constraints, a penalty function 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋}) is incorporated, leading to the 

combined penalized objective function 𝑃({𝑋}) that is ultimately minimized. Each design 

variable 𝑥𝑖 is constrained within a specified range, defined by its lower bound 𝑥𝑖
𝐿 and upper 

bound 𝑥𝑖
𝑈.The optimization must also satisfy frequency constraints, 

where 𝜔𝑗 and 𝜔𝑘 represent the 𝑗-th and 𝑘-th natural frequencies of the structure, 

with 𝜔𝑗
∗ and 𝜔𝑘

∗  denoting their respective lower and upper allowable limits. 
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Figure 2: Flowchart of the PGO algorithm 
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The objective function, representing the total weight of the truss structure, is calculated 

using the following expression: 

 

𝑊({𝑋}) =∑𝜌𝑖 × 𝐴𝑖 × 𝐿𝑖

𝑛𝐸

𝑖=1

 (15) 

 

where 𝑊({𝑋}) represent the weight of the truss structure; 𝑛𝐸 is the number of structural 

members; 𝜌𝑖 is the material density; 𝐴𝑖 is the cross-sectional area; and 𝐿𝑖 is the length of 

the 𝑖-th structural member.  
Penalty functions are used in order to transform a constrained optimization problem into 

an unconstrained one. Here, a dynamic penalty function is employed as follows [8, 42]: 

 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋) = (1 + ɛ1 × 𝜐)
ɛ2;  𝜐 =∑𝜐𝑖

𝑛𝐶

𝑖=1

 (16) 

 

where 𝑛𝐶 is the number of frequency constraints; 𝜐 denotes the sum of the violations of 

the problem constraints; and  ɛ1 and ɛ2 are parameters that determine the behavior of 

penalty function. The values of 𝜐𝑖 (𝑖 = 1, 2, … , 𝑛𝐶) are set to zero for satisfied constraints, 

while in case of violated constraints, they are selected considering the severity of violation. 

This can be expressed as follows: 

 

𝜐𝑖 = {
|1 −

𝜔𝑖
𝜔𝑖
∗|      if the 𝑖 − th frequency constraint is violated

0                                                                                    otherwise

 (17) 

 

The calibration of parameters 𝜀1 and 𝜀2 is crucial as they govern the penalty's severity 

applied to constraint violations, thereby directly influencing the algorithm's balance 

between exploratory search (diversification) and refined local search (intensification) 

[43]. An effective strategy employs a dynamically adjusted penalty where violations are 

treated leniently during initial iterations, permitting extensive exploration of the search 

space, including infeasible regions. As the optimization progresses, the penalty severity is 

systematically increased, gradually shifting focus toward the exploitation of promising 

feasible regions [9]. This dynamic adjustment promotes a balanced search process. In the 

present study, this is achieved by maintaining 𝜀1 at a constant value of 1.0, while 𝜀2 is 

linearly increased from an initial value of 1.5 to a final value of 6 over the course of the 

iterations. 

The natural frequencies (𝜔𝑛) and corresponding mode shapes (𝜙𝑛) required for 

evaluating the constraints are determined by solving the generalized eigenvalue problem 

for an undamped structural system [44]: 

𝑘𝜙𝑛 = 𝜔𝑛
2𝑚𝜙𝑛 (18) 

where 𝑘 and 𝑚 denote the stiffness and mass matrices of the system, respectively; 𝜔𝑛 
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is the 𝑛-th natural frequency of vibration of the system (1 = 1, 2, … , 𝑁); and 𝜙𝑛 is the 𝑛-

th natural mode of vibration of the system. 𝑁 is the number of degrees of freedom of the 

system. 

 

 

4. CASE STUDIES 
 

This section evaluates the performance of the Plasma Generation Optimization (PGO) 

algorithm by applying it to three well-established dome truss optimization problems with 

frequency constraints. The selected examples include a 52-bar dome (small-scale), a 120-bar 

dome (mid-scale), and a 600-bar dome (large-scale), serving to demonstrate the algorithm's 

scalability and robustness. The material properties, design variable boundaries, and frequency 

constraints for all three structures are summarized in Table 1. 

To facilitate a rigorous statistical comparison, the results from 20 independent runs for each 

problem are reported, including the best weight, worst weight, average weight, and standard 

deviation. The computational effort is measured by the maximum number of finite element 

analyses (MaxNFEs). Based on recommendations from foundational PGO studies [37-40], a 

population size of 30 individuals was selected for all numerical examples in this investigation. 

This parameter configuration was found to provide an effective balance between 

computational efficiency and thorough search space exploration, consistently yielding 

superior performance across various structural optimization problems. Consequently, the 

population size (NP) was set to 30 for all examples. The MaxNFEs was established at 20,000 

for the 52-bar and 120-bar domes, and 30,000 for the more computationally demanding 600-

bar dome. For direct comparison with other algorithms reported in the literature, the optimal 

design from the best run is presented in detail. The PGO algorithm and the accompanying 

finite element analysis code were implemented in the MATLAB programming environment. 

The internal parameters of the PGO algorithm, which govern its search dynamics, were 

calibrated for the execution of these numerical studies. The selected values are as follows [37-

40]: EDR=0.6, DR=0.3, and DRS=0.15. These parameters collectively control the transition 

probabilities between the algorithm's core physical processes, thereby balancing its 

exploratory and exploitative behavior. 

 
Table 1: Material properties, cross-sectional area bounds, and frequency constraints of various 

problems 

Problem 
Elasticity modulus 

𝐸 (N/m2) 

Material density 𝜌 

(kg/m3) 

Material density 𝜌 

(kg/m3) 

Frequency 

constraints (Hz) 

52-bar dome-like 

truss 
2.1×1011 7800 

0,0001 ≤ 𝐴𝑖
≤ 0,01 

𝜔1 ≤ 50/𝜋, 𝜔2 ≥
90/𝜋 

120-bar dome-like 

truss 
2.1×1011 7971.81 

0,0001 ≤ 𝐴𝑖
≤ 0,01 

𝜔1 ≥ 9, 𝜔2 ≥ 11 

600-bar dome-like 

truss 
2.1×1011 7850 

0,0001 ≤ 𝐴𝑖
≤ 0,01 

𝜔1 ≥ 5, 𝜔3 ≥ 7 

 

4.1 A 52-bar dome-like truss 

The first benchmark problem involves a combined sizing and geometry optimization of a 
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52-bar dome truss, where both cross-sectional areas and nodal coordinates serve as design 

variables. The initial structural configuration is shown in Figure 3. Under symmetrical 

constraints, all unconstrained nodes are permitted to shift up to ±2 m from their original 

positions. This results in a total of 13 design variables: eight correspond to member cross-

sectional areas, and five control the nodal coordinates. Table 2 outlines the grouping of 

structural members based on symmetry. Material properties, frequency constraints, and 

bounds on cross-sectional areas are provided in Table 1. Additionally, a non-structural mass 

of 50 kg is applied to each free node. To ensure statistical reliability, twenty independent 

optimization runs were conducted. The best-performing result from these runs is reported 

herein to facilitate a consistent comparison with results from other optimization algorithms 

documented in the literature. This problem has been studied by several researchers by using 

various optimization methods: Miguel and Miguel [45] using Harmony Search (HS) and 

Firefly Algorithm (FA), Kaveh and Zolghadr [46] utilizing a hybridized CSS-BBBC 

algorithm, Kaveh and Zolghadr [47] employing Democratic Particle Swarm Optimization 

(DPSO), Ho-Huu et al. [48] by using Improved Differential Evolution (IDE), and Kaveh and 

Ilchi Ghazaan utilizing [49] hybridized optimization algorithms.  

A comparative assessment of the optimal designs for the 52-bar dome-like truss, as 

presented in Table 2, demonstrates the competitive performance of the PGO method. The PGO 

algorithm achieves the lightest recorded best weight of 193.1936 kg, slightly outperforming 

other methods such as DE and IDE. Furthermore, the average weight and worst weight 

solutions found by PGO are highly competitive, indicating its consistent performance across 

multiple runs. While the standard deviation associated with PGO is higher than that of some 

other algorithms, its ability to consistently find very low-weight designs underscores its 

effectiveness.  

In terms of computational expense, PGO converges to its optimal design using 18,660 finite 

element (FE) analyses. This represents a lower computational demand compared to the DE 

method, which required 20,002 analyses, though it is slightly higher than the IDE's 

requirement of 12,191 analyses. This balance between solution quality and computational 

effort highlights the efficiency of the PGO approach. 

The first five natural frequencies of the optimal design found by PGO are listed in Table 3. 

The data confirms that all frequencies for the PGO design satisfy the imposed constraints. 

Similar to the trends observed with other methods, the second natural frequency appears to be 

the governing constraint for this structural design problem. 

Finally, an examination of the convergence history, illustrated in Figure 4, reveals the 

characteristic search trajectory of the PGO algorithm. The plot shows a steady and pronounced 

decline in both the best and average penalized weights, demonstrating the method's effective 

and stable convergence towards the optimal design region. This further corroborates the 

robustness of the PGO algorithm in solving this structural optimization problem. 
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Figure 3: Initial layout of the 52-bar dome-like truss: (a) top view, (b) side view 

 
Table 2: Comparison of optimal results of the 52-bar dome-like truss obtained by different 

algorithms 

Design 

variable 

𝑍𝑖, 𝑋𝑖 (m); 

𝐴𝑗 (cm
2) 

HS [45] FA [45] 

CSS-

BBBC 

[46] 

DPSO 

[47] 
DE [47] IDE [47] 

ALC-

PSO 

[49] 

PGO 

ZA 4.7374 6.4332 5.331 6.1123 6.0136 6.0052 5.6972 5.9280 

XB 1.5643 2.2208 2.134 2.2343 2.2802 2.3004 2.0008 2.2209 

ZB 3.7413 3.9202 3.719 3.8321 3.7488 3.7332 3.7000 3.7282 

XF 3.4882 4.0296 3.935 4.0316 3.9980 4.0000 3.8052 3.9508 

ZF 2.6274 2.5200 2.500 2.5036 2.5000 2.5000 2.5000 2.5000 

A1-4 1.0085 1.0050 1.0000 1.0001 1.0000 1.0001 1.0000 1.0000 

A5-8 1.4999 1.3823 1.3056 1.1397 1.0981 1.0875 1.395 1.1571 

A9-16 1.3948 1.2295 1.4230 1.2263 1.2132 1.2135 1.3184 1.2354 

A17-20 1.3462 1.2662 1.3851 1.3335 1.4227 1.4460 1.5027 1.4424 

A21-28 1.6776 1.4478 1.4226 1.4161 1.4217 1.4315 1.3888 1.3996 

A29-36 1.3704 1.0000 1.0000 1.0001 1.0001 1.0000 1.0000 1.0000 

A37-44 1.4137 1.5728 1.5562 1.5750 1.5770 1.5623 1.724 1.5864 

A45-52 1.9378 1.4153 1.4485 1.4357 1.3722 1.3724 1.3187 1.3741 

Best 

weight 

(kg) 
214.94 197.53 197.309 195.351 193.2481 193.2085 196.27 193.1936 

Average 

weight 

(kg) 
229.88 212.80 - 198.71 196.0585 196.0478 207.13 198.5633 

Worst 

weight 

(kg) 
- - - - 202.4296 202.4215 - 231.1741 

Standard 

deviation 

(kg) 
12.44 8.44 - 13.85 4.1708 4.1823 6.36 12.5918 

Number of 

FE 

analyses 

20000 1000 4000 6000 20002 12191 9000 18,660 
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Table 3: Natural frequencies (Hz) of the optimal designs for the 52-bar dome-like truss 

Frequency 

number 
HS [45] FA [45] 

CSS-

BBBC 

[46] 

DPSO 

[47] 
DE [47] IDE [47] 

ALC-

PSO 

[49] 

PGO 

1 12.2222 11.3119 12.987 11.315 11.5319 11.6033 10.4619 11.3146 

2 28.6577 28.6529 28.648 28.648 28.6494 28.6481 28.6479 28.6479 

3 28.6577 28.6529 28.679 28.648 28.6509 28.6481 28.6480 28.6479 

4 28.6618 28.8030 28.713 28.650 28.6509 28.6490 28.7129 28.6484 

5 30.0997 28.8030 30.262 28.688 28.6661 28.6530 28.8922 28.7052 

 

 
Figure 4: The best and average weight convergence histories for the 52-bar dome-like truss 

 

4.2 A 120-bar dome-like truss 

The second numerical example involves the size optimization of a 120-bar dome truss, the 

layout of which is presented in Figure 5. The geometry of the structure remains fixed during 

the optimization process. Owing to structural symmetry, the members are categorized into 

seven distinct groups, resulting in a total of seven sizing design variables. The material 

properties, constraints on natural frequencies, and permissible bounds for the cross-sectional 

areas are consistent with the previous example and are summarized in Table 1. Non-structural 

masses are applied to the free nodes to simulate additional operational weight. A mass of 3000 

kg is located at the central node (node 1), 500 kg at the intermediate ring nodes (nodes 2 

through 13), and 100 kg at the remaining outer nodes. To ensure statistical reliability, twenty 

independent optimization runs were performed. The design corresponding to the best-

performing run is reported in the subsequent section for comparison with established results 

from the literature. This problem has been solved with various methods by different 

researchers: Khatibinia and Naseralavi [1] using Orthogonal Multi-Gravitational Search 

Algorithm (OMGSA), Tejani et al. [50] employing Improved Symbiotic Organisms Search 

(ISOS), Kaveh and Zolghadr [47] by using Democratic Particle Swarm Optimization (DPSO), 
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Kaveh and Zolghadr [51] utilizing Particle Swarm Ray Optimization (PSRO), Taheri and Jalili 

[52] using Enhanced Biogeography-Based Optimization (EBBO), Dede et al. [53] using Jaya 

algorithm, and Tejani et al. [54] using a Modified Sub-Population Teaching-Learning-based 

Optimization (MS-TLBO). 

A comparative evaluation of the optimal designs for the 120-bar dome-like truss, as 

detailed in Table 4, highlights the superior performance of the PGO algorithm. The results 

indicate that PGO achieves the most lightweight structure among all compared methods, with 

a best weight of 8707.34 kg. Furthermore, PGO demonstrates exceptional consistency, 

yielding the best average weight and a highly competitive worst weight. The low standard 

deviation value further confirms the robustness and reliability of the PGO approach in 

repeatedly locating high-quality solutions across multiple runs. 

In terms of computational demand, PGO required 18,780 finite element analyses to 

converge to the optimal design. While this is a higher number of analyses compared to several 

other algorithms, the superior quality and consistency of the final results justify the 

computational investment, establishing a favorable trade-off between performance and 

resource expenditure. 

The natural frequencies for the PGO-optimized design, presented in Table 5, confirm that 

all constraints are successfully met. The data shows that the first frequency is the active 

constraint for this structural problem, as its value is precisely at the specified lower limit of 

9.0000 Hz. 

The convergence history, illustrated in Figure 6, provides insight into the search efficiency 

of the PGO algorithm. The plot shows a rapid and steady decline in structural weight, 

demonstrating the method's effective and direct trajectory toward the global optimum region. 

This efficient convergence behavior further solidifies the capability of PGO in handling 

complex structural optimization challenges. 

 
Table 4: Comparison of optimal results of the 120-bar dome-like truss obtained by different 

algorithms 

Element 

group 

𝐴𝑖 (cm
2) 

IGSA [1] 
OMGSA 

[1] 
ISOS [50] 

DPSO 

[47] 

PSRO 

[51] 

EBBO 

[52] 
Jaya [53] 

MS-

TLBO 

[54] 

PGO 

1 19.043 20.263 19.6662 19.607 19.972 19.8878 19.309 19.4486 19.5059 

2 41.418 39.294 39.8539 41.290 39.701 39.8248 40.763 40.3949 40.2263 

3 10.218 9.989 10.6127 11.136 11.323 10.5496 10.791 10.6921 10.6113 

4 20.664 20.563 21.2901 21.025 21.808 21.0929 21.272 21.3139 21.1780 

5 10.795 9.603 9.7911 10.060 10.179 9.4245 9.943 9.8943 9.9194 

6 12.190 11.738 11.7899 12.758 12.739 11.6648 11.695 11.7810 11.7999 

7 14.960 15.877 14.7437 15.414 14.731 15.1282 14.579 14.5979 14.7623 

Best weight 

(kg) 
8727.28 8724.97 8710.0620 8890.48 8892.33 8711.95 8709.35 8708.729 8707.34 

Average 

weight (kg) 
8798.55 8745.58 8728.5951 8895.99 8921.3 8718.5 8713.21 8734.7450 8709.32 

Worst 

weight (kg) 
8800.45 8760.75 8770.8110 - - - - - 8718.55 

Standard 

deviation 

(kg) 
7.195 1.183 14.2296 4.26 18.54 7.15 2.97 27.0503 2.57 

Number of 

FE analyses 
4000 4000 4000 6000 4000 6500 18000 4000 18,780 
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Figure 5: Schematic of the 120-bar dome-like truss  

 

Table 5 Natural frequencies (Hz) of the optimal designs for the 120-bar dome-like truss 

Frequency 

number 
IGSA [1] 

OMGSA 

[1] 

ISOS 

[50] 

DPSO 

[47] 

PSRO 

[51] 

EBBO 

[52] 

Jaya 

[53] 

MS-

TLBO 

[54] 

PGO 

1 9.001 9.002 9.0001 9.0001 9.000 9.0000 9.0000 9.0002 9.0000 

2 11.003 11.003 10.9998 11.0007 11.000 11.0000 11.0002 11.0000 11.0000 

3 11.003 11.003 - 11.0053 11.005 11.0002 11.0002 11.0000 11.0000 

4 11.017 11.007 - 11.0129 11.012 11.0008 11.0008 11.0006 11.0000 

5 11.089 11.076 - 11.0471 11.045 11.0657 11.0674 11.0672 11.0671 

 

4.3 A 600-bar dome-like truss 

Figures 7 and 8 show the schematic of a 600-bar single-layer dome structure, which is 

considered as the last example. The entire structure is composed of 216 nodes and 600 

elements. The structure has a cyclically repeated pattern and could be generated by the cyclic 

repetition of a sub-structure composed of 9 nodes and 25 elements. Symmetric dome-like truss 
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structures and other symmetric structures have been the subject of several group theoretic 

investigations mainly performed by Zingoni [55]. The angle of rotation of the sub-structure 

about the axis of revolution is 15°. The sub-structure is shown in Figure 9 in more detail for 

nodal numbering and coordinates. Table 6 lists the nodal coordinates of the typical sub-

structure in the Cartesian coordinate system. Each element of the sub-structure is considered 

as a design variable. The layout of the structure is kept unchanged during the optimization 

process. Thus, this is a size optimization problem with 25 design variables. Material density, 

elasticity modulus, cross-sectional area bounds, and frequency constraints of the structure are 

listed in Table 1. A non-structural mass of 100 kg is attached to all free nodes of the dome. 

This problem has been investigated by several researchers via different optimization methods: 

Kaveh and Zolghadr [56] using DPSO, Kaveh and Ilchi Ghazaan [57] utilizing Vibrating 

Particles System (VPS), Kaveh and Ilchi Ghazaan [10] employing Enhanced Colliding Bodies 

Optimization (ECBO) and its cascade version, Kaveh and Ilchi Ghazaan [58] using VPS and 

its hybrid version, and Kaveh and Ilchi Ghazaan [59] utilizing Colliding Bodies Optimization 

(CBO), Kaveh et al. [60] using Improved Slime Mould (ISMA), Kaveh et al.[61] using Set-

Theoretical-Based Jaya Algorithm (ST-JA), Kaveh et al. [62] using Success-History Based 

Adaptive Differential Evolution (SHADE) algorithm, and Kaveh et al. [63] using Improved 

Hybrid Growth Optimizer (IHGO).  

 

 

Figure 6: The best and average weight convergence histories for the 120-bar dome-like 

truss 

A comparison of the optimal designs for the highly complex 600-bar dome-like truss, as 

summarized in Table 7, demonstrates the notable performance of the PGO algorithm. The 

results reveal that PGO achieves the lightest best-weight structure among all compared 

methods, with a recorded weight of 6066.74 kg. This represents a significant improvement 

over the best designs found by other advanced algorithms. 

However, a more detailed examination of the statistical results reveals a distinct 
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characteristic of the PGO method. While it successfully located the lightest individual design, 

the algorithm's performance across multiple runs, as indicated by the higher average weight, 

worst weight, and substantial standard deviation of 557.22 kg, shows greater variability 

compared to several other methods. This suggests that while PGO is highly effective at 

exploring the design space to find a very low-weight solution, the consistency of its outcomes 

can vary. In terms of computational cost, PGO required 29,730 finite element analyses to 

converge, which is a moderate demand relative to the other algorithms applied to this large-

scale problem. 

The convergence history of PGO, illustrated in Figure 10, provides further insight. The 

plot shows a significant and rapid initial decrease in the best-found weight, underscoring the 

algorithm's strong exploratory capability in the early stages. The natural frequencies for the 

PGO-optimized design, presented in Table 8, confirm that all constraints are satisfactorily 

met, with the first two frequencies actively governing the design at their specified lower 

limits. 

 
Figure 7: Schematic of the 600-bar single-layer dome 
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Figure 8: The 600-bar single-layer dome-like truss (top view) 

 

Table 6: Coordinates of the nodes of the 600-bar dome-like truss 

Node number Coordinates (𝑥, 𝑦, 𝑧) 

(m) 

1 (1.0, 0.0, 7.0) 
2 (1.0, 0.0, 7.5) 
3 (3.0, 0.0, 7.25) 
4 (5.0, 0.0, 6.75) 
5 (7.0, 0.0, 6.0) 
6 (9.0, 0.0, 5.0) 
7 (11.0, 0.0, 3.5) 
8 (13.0, 0.0, 1.5) 
9 (14.0, 0.0, 0.0) 
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Figure 9: Details of a sub-structure of the 600-bar single-layer dome 

Table 7: Comparison of optimal results of the 600-bar dome-like truss obtained by different 

algorithms 

Element 

number 

(element 

nodes) 

DPSO 

[56] 

VPS 

[57] 

ECBO 

[10] 

ECBO-

Cascade 

[10] 

CBO 

[59] 

VPS 

[58] 

MDVC-

UPVS 

[58] 

PGO 

1 (1-2) 1.365 1.3030 1.4305 1.0299 1.2404 1.3155 1.2575 1.2367 

2 (1-3) 1.391 1.3998 1.3941 1.3664 1.3797 1.2299 1.3466 17.2123 

3 (1-10) 5.686 5.1072 5.5293 5.1095 5.2597 5.5506 4.9738 12.9468 

4 (1-11) 1.511 1.3882 1.0469 1.3011 1.2658 1.3867 1.4025 9.7043 

5 (2-3) 17.711 16.9217 16.9642 17.0572 17.2255 17.4275 17.3802 6.8448 

6 (2-11) 36.266 38.1432 35.1892 34.0764 38.2991 40.1430 37.9742 5.5899 

7 (3-4) 13.263 11.8319 12.2171 13.0985 12.2234 12.8848 13.0306 4.2002 

8 (3-11) 16.919 16.6149 16.7152 15.5882 15.4712 15.5413 15.9209 3.4860 

9 (3-12) 13.333 11.3403 12.5999 12.6889 11.1577 12.2428 11.9419 1.3342 

10 (4-5) 9.534 9.3865 9.5118 10.3314 9.4636 9.3776 9.1643 5.4125 

11 (4-12) 9.884 8.7692 8.9977 8.5313 8.8250 8.6684 8.4332 37.9885 

12 (4-13) 9.547 9.6682 9.4397 9.8308 9.1021 9.1659 9.2375 10.7810 

13 (5-6) 7.866 6.9826 6.8864 7.0101 6.8417 7.1664 7.2213 8.9159 

14 (5-13) 5.529 5.4445 4.2057 5.2917 5.2882 5.2170 5.2142 6.9115 

15 (5-14) 7.007 6.3247 7.2651 6.2750 6.7702 6.5346 6.7961 7.6988 

16 (6-7) 5.462 5.1349 6.1693 5.4305 5.1402 5.4741 5.2078 4.6182 

17 (6-14) 3.853 3.3991 3.9768 3.6414 5.1827 3.6545 3.4586 4.5085 

18 (6-15) 7.432 7.7911 8.3127 7.2827 7.4781 7.6034 7.6407 15.2861 

19 (7-8) 4.261 4.4147 4.1451 4.4912 4.5646 4.2251 4.3690 8.3854 

20 (7-15) 2.253 2.2755 2.4042 1.9275 1.8617 1.9717 2.1237 5.0823 

21 (7-16) 4.337 4.9974 4.3038 4.6958 4.8797 4.5107 4.5774 3.6628 

22 (8-9) 4.028 4.0145 3.2539 3.3595 3.5065 3.5251 3.4564 2.1247 

23 (8-16) 1.954 1.8388 1.8273 1.7067 2.4546 1.9255 1.7920 1.8824 

24 (8-17) 4.709 4.7965 4.8805 4.8372 4.9128 4.7628 4.8264 1.6597 
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25 (9-17) 1.410 1.5551 1.5276 2.0253 1.2324 1.6854 1.7601 1.6170 

Best weight 

(kg) 
6344.55 6133.02 6171.51 6140.51 6182.01 6120.01 6115.10 6066.74 

Average 

weight (kg) 
6674.71 6142.03 6191.50 6175.33 6226.37 6158.11 6119.95 6299.60 

Worst 

weight (kg) 
- - - - - - - 8136.73 

Standard 

deviation 

(kg) 
473.21 12.54 39.08 34.08 60.12 28.49 16.23 557.2235 

Number of 

FE analyses 
9000 30000 20000 20000 20000 30000 18000 29,730 

 
Table 8: Natural frequencies (Hz) of the optimal designs for the 600-bar dome-like truss 

Frequency 

number 

DPSO 

[56] 

VPS 

[57] 

ECBO 

[10] 

ECBO-

Cascade 

[10] 

CBO 

[59] 
VPS [58] 

MDVC-

UPVS 

[58] 

PGO 

1 5.000 5.0000 5.002 5.001 5.000 5.000 5.000 5.0015 

2 5.000 5.0003 5.003 5.001 5.000 5.000 5.000 5.0015 

3 7.000 7.0000 7.001 7.001 7.000 7.000 7.000 7.0000 

4 7.000 7.0001 7.001 7.001 7.000 7.000 7.000 7.0000 

5 7.000 7.0002 7.002 7.002 7.001 7.000 7.000 7.0001 

 

 

Figure 10: The best and average weight convergence histories for the 600-bar dome-like 

truss 
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5. CONCLUSIONS 
 

The Plasma Generation Optimization (PGO) algorithm is a physically-based metaheuristic, 

recently developed and inspired by the energy transfer processes in plasma generation. In this 

paper, the standard PGO algorithm was successfully applied for the first time to the 

challenging domain of structural optimization with multiple frequency constraints. The 

algorithm's performance was rigorously evaluated on three dome truss benchmarks of 

increasing complexity: the 52-bar, 120-bar, and 600-bar structures. 

Numerical results demonstrate that PGO is a highly competitive and effective optimizer 

for this class of problems. For the 52-bar and 120-bar domes, PGO achieved the lightest best-

weight designs while maintaining strong statistical performance in terms of average and worst 

weights. In the case of the large-scale 600-bar dome, PGO identified the overall lightest design 

among all compared algorithms, showcasing its powerful global exploration capability, 

particularly through the Lévy-flight-driven ionization process. The inherent search 

mechanism of PGO, which balances global exploration (via ionization) with local refinement 

(via excitation and de-excitation), provides a robust foundation for navigating the highly non-

linear and non-convex search spaces typical of frequency-constrained optimization. The 

convergence histories further confirm the algorithm's efficiency in steadily progressing 

towards high-quality, feasible designs. 

The findings of this study confirm that the PGO algorithm can serve as a reliable and high-

performance tool for solving complex truss optimization problems with dynamic constraints. 

Finally, the demonstrated potential of PGO suggests its promising applicability to a broader 

range of structural optimization challenges, such as frames, plates, and other engineering 

systems. 
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